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ABSTRACT

A variationally consistent tenth-order displacement theory of stretching and bending
of orthotropic elastic plates is proposed which lends itself perfectly to finite element for-
mulations based upon C' and C-continuous displacement approximations. The deforma-
tions due to all strain and stress components are accounted. The theory is derived from
three-dimensional elasticity via the principle of virtual work by expanding the displace-
ment components with respect to the thickness coordinate by means of Legendre polyno-
mials, where the transverse displacement is of a special parabolic form while the inplane
displacements are linear. The issues of thickness-expansion related inconsistencies in the
transverse shear strains and the transverse normal stress are resolved in a rational fash-
ion. The resulting parabolic shear strains incorporate Reissner's shear correction factor,
while the transverse normal strain varies cubically across the plate thickness. The varia-
tional principle yields seven equations of motion and exclusively Poisson-type edge bound-
arv conditions. A qualitative assessment of the theo,-y is carried out for the problem of
static equilibrium involving an infinite plate under a sinusoidal normal pressure. Perti-
nent issues on the particular suitability of the theory for the development of efficient
di:-placement plate elements are discussed.
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INTRODUCTION

In many design-critical regions in plate structures, such as those involving highly stressed
areas near holes, cutouts and impact, bolted and adhesive joints, etc., deformations due to
transverse shear and transverse normal strains and stiesses can significantly contribute to the
three-dimensional stress state. These effects are especially pronounced in composite laminates
that are inherently compliant in the tranzverse shear and transverse normal modes of deforma-
tion. To adequately model such critical plate regions with finite elements, three-dimensional
elements are commonly used, usually at a vry high computational cost. Alternatively, from
the standnroint of computational efficiency, and in order to avoid or minimize costly sub-
structuring with three-dimensional elements, it would be most desirable to discretize with accu-
rate plate elements that incorporate all strain and stress effects.

Many effective plate finite elements developed to date evolved from a shear-deformable
displacement theory originally derived for homogeneous isotropic plates by Mindln.' The the-
ory lends itself to the development of simple and efficient elements by virtue of the inherent
C-continuity prescribed for the approximation of the plate displacement var;h!es. An earlier
plate theory of Reissner- 4 is based on stress approximations including the transverse normal
stress component (which ia neglected in the Mindlin theory) and is somewhat more accurate
as far as the stresses are concerned. Both of the Mindlin and Reissner theories rely upon
weighted-average displacement variables which constitute linear variations across the thickness
for the inplane displacements and a uniform transverse displacement. From a perspective of
composite laminate analysis, the displacement-based theories are generally preferred, allowing
for discontinuous normal stresses which occur naturally in composite laminates (e.g., refer to
Reference 5).

in recent years, several higher-order shear deformable displacement plate theories have
been introduced (e.g., see References 6 and 7), in which the inplane displacements vary cubi-
cally across the plate thickness while the transverse displacement is uniform. While these the-
ories appear ta have a wider applicability range than their predecessors, 5 they possess a
serious drawback from the finite element standpoint, the requirement of C1 continuity which
is known to inhibit development of simple and efficient elements (e.g.. see discussions in
Reference 8).

9-%16

Hligher-order plate theories, which in addition to transverse shear also include the
effect of transverse normal strainin,. are intended to extend the range of applicability :
design-critical situations such as those mentioned earlier. The interested reader may find
insightful reviews of many notable higher-order theories in the papers by Lo, Christensen. and
WuTS and Reissner. 17 Regrettabiv, these theories are rather unattractive from the finite cle-
ment viewpoint for the following reasons: (i) an excessively large number of plate displacc-
ment variables (e.g., Lo et al.'s theory1 5 possesses 11 kinematic variables for the problem of
bending and stretching, whereas the Reissner and Mindlin theories involve only five such vari-
ables), (ii) natural edge-boundary conditions that include nonclassical quantities such as higher-
order force and moment resultants 9- (in addition to the physically meaningful Poisson
conditions including1 tree prescribed edge forces, bending, and twisting moments), (iii) a lack
of variational basis, 6 and (iv) a departure from the kinematically admissible evaluation of
stress; i.e., evaluation of stress components from equilibrium equations rather than (ii a kine-
matically admissible manner) from constitutive relations.



The present development of a higher-order plate theory, incorporating all stress and strain
effects, is mntivated by finite element application, where a variational formulation is desired
requiring, at most, C'-conlinuous displacement fields with the least number of variables, and
relying exclusively upon Poisson-type boundary conditions.

In the Kinematic Assumptions Section, we expand three Cartesian displacements in terms
of a thickness coordinate using Legendre polynomials to simplify integration across the thick-
ness. To obtain the simplest higher-order theory, we adopt the same expansion order as pro-
posed by Hildebrand, Reissner, and Thomas:9 linear and parabolic distributions for the inplane
and transverse displacements, respectively. In contrast to Hildebrand et al.'s transverse dis-
placement expansion in which the leading term is the midplane displacement, the leading term
in the present expansion is Reissner's 4 weighted-average displacement Here, as in Ref-
erence 9 the parabolic transverse displacement also involves two higher-order dispiacement
components. The particular advantage of the present expansion strategy is manifested in
finite clement approximations, where all kinematic variables need not exceed Co continuity.
In the Concluding Summary and Finite Element Suitability Section, we shall remark further
on some important consequences of the present continuity requirements on finite element
development.

In the Transverse Shear Field Consistency and Transverse Normai Field Consistency Sec-
tions, we delineate certain types of inconsistencies that arise in the thickness expansion for
the transverse shear strains and transverse normal stress, and propose a novel approach which
eradicates these inconsistencies in a rational manner. In the Governing Equations Section, we
employ the principle of virtual work, which yields seven partial differential equations of
motion and exclusively Poisson edge boundary conditions. In the special case of static equilib-
rium, the theory decouples into one of fourth-order inplane stretching, sixth-order transverse
bending, and zero-order'transverse stretching. Whereas the first twc sets of equations corre-
spond to Reissner's theory, 2-4 the last set includes two higher-order transverse displacements
of zero-order (i.e., they possess no spatial derivatives) and first-order derivatives of the
weighted-average variables. The solution to a plate boundary value problem simply involves
solving the fourth-order inplane stretching and sixth-order transverse bending equations subject
to Poisson boundary conditions (as in Reissner's theory), and then a straightforward evaluation
of the two higher-order variables from the zero-order transverse stretching equations.

One remarkable aspect of the theory is the particularly accurate representation of all
transverse stresses. Thus, the kinematically admissible transverse shear and normal stresscs
are shown to satisfy exactly the transverse equilibrium equation of elasticity, i.e., they arc also
statically admissible in the transverse equilibrium sense. The transverse shear stresses vary par-
abolically across the thickness while the transverse normal stress has a cubic distribution. All
transverse stresses satisfy the prescribed tractions at the top and bottom p!Ite faces.

In the Assessment of Theory Section, we examine the range of applicability of the theory
via an analytic solution for an infinite isotropic plate under quasi-static sinusoidal normal pres-
sure and compare results with the exact elasticity solution and several other plate theories.

Finally, in the Concluding Summary and Finite Element Suitability Section, we discuss the
issues concerning utilization of this variational displacement theory within the finite element
framework, and suggest ways of formulating displacement plate elements whose computational
efficiency would be comparable to Reissncr-Mindlin type elements. ' '
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KINEMATIC ASSUMPTIONS

Consider an orthotropic, homogeneous elastic plate located in the three-dimensional Carte-
sian framework (x, y, z), where the x-V pIdne passes through the middle of the plate thickness

0, wheie z = zeh f[-1, I] is a dimensionless thickness coordinate, and 2h is the plate
thick-ness. The too (S-) and bottom (S) plate surfaces are taken free of shear tractions and
loaded by normal pressures

T iz(C=1) = 0 (i=x,y), az(i) q+(x,y,t) on ()

( =-1)= 0 (i=x,y), a (&=-l)= q (x,y,t) on S
1z z

where t denotes time. On a part, Se, of the cylindrical boundary surface S normal to the
midplane S, a traction vector is prescribed:

T 1' ' 1 } on S.. (3)

We assume the plate principal material directions to be coincidents with the Cartesian
directions, and small displacements.

The simplest physically meaningful approximations of displacement components allowing
for the transverse normal straining involve linear through-thickness expansions of the inplane
displacements (as in classical and refined theories), and a parabolic approximation of the trans-
verse displacement. This level of approximation was first discussed by Hildebrand et al. 9 For
convenience, we expand the Cartesian displacement components by means of Legendre polyno-
mials with u, having a special form:

u (x,y,z,t) = u(x,y,t) + hP 1 ( )e (x,y,t),

Uy (x,y,z,t) = v(x,y,t) + hP(,)Ox,y,t), (4)
U(Xv,z,t) = w(x,y,t) + P(,)w,(x,y,t) + [Po(.)/5+P 2( )]w2(x,y,t),

• ,; e 1
P r) - 1 0 [( :-L.n dgn , (I)=1 (£, zih -iiV]ni In n

0.<

(i .P =  1, P:= :, P = (3 ,2-1)/,2, P3=  E,(5 1-3)i2

ire Leaendre polynomialk which, due to their orthogonality property,
1

f P P dl = 0  i f m;,-n (5
m n 2/(2m+1) if m-n

prove convenient whenever thickness integrations are performed.

The expansion coefficients u, v, 0y, O, and w in Equation 4 are weighted average
kinematic variables defined here in accordance with Reissner.4
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h h

u u dz, v - f u dz (7)

-h -h

h h
3 3 z dz8 = fip uy Uy , 9v = i-3j ux z (8)

-h -h

h

w = L U (Po- P2) dz, P - P 2  3(1 2 (9)
-h

where u and v denote the midplane displacements along the x and y directions, respectively
and 0, and 0, denote the normal rotations about the x and y axes, respectivcly. In Equa-
tion 4, w, and w2 are the higher-order components of a transverse displacement, u , which
varies oarabolicallv across the thickness. Note that w is the weighted average transverse dis-
placement, in contrast to cther higher-order theories employing the midplane displacement
variable. As will be seen, the special expansion for u, leads to exclusively Poisson-type edge
boundary conditions which are naturally obtained from the virtual work principle.

The plate strain-displacement relations are obtained in the usual manner by introducing
Equation 4 into the strain-displacement relations of three-dimensional elasticity:

i= ui'i' yij = (uij + uji), (i,j = x,y,z). (10)

resulting in

x x y'x ~,- (la)

y U, + V, + h-(9 + )-
xvr x v'V xx

3 3= :zw. W') + W.' + I
xz xz 0  " + - W", w

3 3 (wb)

Yyz - -0 w2  + wly + _ 2

YXZ= + WX, YyzO= e + w, J
= (w, + 3 w2)/h (llc)

where a comma (,) denotes partial differentiation with respect to the spatial coordinates. To

facilitate our subsequent discussion, we expressed the strains in Equations 11 directly in terms
of the thickness coordinate .
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The complete Hooke's law for a homogeneous orthotropic plate may be expressed in
matrix form as:

a C E1,

or

x CI C12 C 3 0 0 0 x

y 1  C 2 2 C3 0 0 0 :y (12)

Z 3 3 0 0
Cz 0

yz C 44 0 0 yz

Txz (Symm.) C55  0 xz

T C 6 6xy x

TRANSVERSE SHEAR FIELD CONSISTENCY

From Equation lib, it becomes evident that certain '-distribution inconsistencies are pres-
ent in the expansions of /xz and yz. Here, both linear and quadratic terms in 4 involve only
w, and w-, which are contributed from uz. This is obviously the result of ui,z (i = x, y)
being uniform across the thickness, whereas u,j vary parabolically. It is clear that to possess
a consistent kinematic form, each 4-polynomial coefficient must include contributions from
both the inplane and transverse displacements, as implied in Equation 10.

A simple way of a,;.z-ssina the effect of the aforementioned inconsistency is to examine
the nature of the transverse shear strains for a plate under the Kirchhoff constraint, i.e.,
'z--O (i = x, y) with the plate thickness diminishing to zero. From each shear strain, there
results three constraint equations:

£~ ~ (* 2 w ), '.! Y W~2'1 - C1xo  0 ',x ' x x (

(2''

It can be shown that (e.g.. see results in the Assessment of Theory Section):

,I _ = o(2h/L)r
y.

(13al

W__,_ _ O(2h/L), (,i='x,y)
iz5



where L denotes some characteristic plate span. Accounting for Equation 13a in Equa-
tion 13, it bec'omes apparent that. at least in the Kirchhoff regime, the resulting shear strains
are uniform )ss the plate thickness:

Yiz = iz - 0, (i=x,V). (14)

The direct implication of Equation 14 is that explicit conditions of zero shear tractions on the
plate faces cannot be satisfied and, moreover, an ad hoc specification of a shear correction
factor is necessary to achieve agreement with the Kirchhoff theory for the class of thin plate
problems.'

To eradicate this type of kinematic inconsistency while retaining a parabolic distribution
for uz, the gradients u,,, (i = x, y) should naturally be represented by a complete quadratic
polynomial in .5, thus implving cubic distributions for u, and u,. Approximations of this type
were employed by Lo et al. t (who extended Reissner's work1 V in which inplane modes of
deformatinc were neglected) resulting in a complex twenty-second-order theory of limited prac-
tical usefulness.

In the present treatment, in order to resolve this difficulty while preserving the sirnplicltt
of Equation -, -,e propose to replace the uniformly distributed gradients u. z (j = x.,
(directly computed from Equations 4 and 10) with the field-consistent gradients u',. vhicij

vary p-wabolically across the thickness:

2

U i'Z a aik(x,y,t) P k(0), (i=x,y). (5

k=O

Henceforth, the superior asterisk (*) will denote field-consistent gradient and resulting stress
quantities. The relations oetween aik and plate displacement variables are determined via two
types of physically desirable constraint conditions:

The field-consistent transverse :Inear stresses are recuired to satisfv tract.on-free hound,ir,, ,n-
ditions at the top and bottom plate Caces:

".= 0 (i~x,y). 1 tl

( =i., --)

Taking into account the constitutive relations. Equation 12, the above stress constraints cive
rise to the vanishing conditions upon the shear strairc:

"i= (Ui'z + U = 0 (i=x,y),
( =1, -1)

Furthermore. the field-consistent shear strains are required to be equivalent in the mean to
their fielt-inconsistent counterparts from Equation l1b:

6



h

rin < - iz) dz, (i=x,Y).
-h

Equatiors 16a and 17 are solved for a,k (i x, y; k = 0, 1, 2), giving rise to the consistent
shear strains:

z = 4 P(w, x v)

yvz = kO(P - P )(w,, + a )

in which k 5:0 emerged from this derivation and is coincident with Rcissner's shear
correction factor.

TRANSVERSE NORMAL FIELD CONSISTENCY

A stress tpe of fiel!d inconsistency can be detected in the transverse equiiibrium equ-lo.
of the three-dimensional elasticity:

+ + 7 = 0 (ignoring the body force). (19)

Here, owing to the parabolic i-distribution of r,, (i = x, y), o,, must be cubic in : however.
assumptions, Equation 4, can only yield a which is linear. To overcome this discrepancy, ve
replace u,., (computed directly from Equations 4 and 10) with the field-consistent gradient
u*,z. having a cubic -distribution across the thickness:

J

=z= b (x,v,t) P.(r) (20)
z z' k Kk

h, t .., ck=0
.vhcrc \.:,re J,,:ecrminced tr."m the :ow[,,,in~Z constraint equations:

- <o rr"to':neous hourdi,, condtionsr., on the :hroueh-thickness 2r;adAent 01 ,rans,.cr-s aorn'::,

- - ) = 0 .-

These conditions result from Equation 19 when taking the top and bottom plate faces to be
trcc of shear tractions.

The field-consistcnt transverse normal strain is required to be equivalent in the mean to its
fic;d incn nss tcnt c,-untcrpart ot Equation 11c:

h

-n



From Equations 21 and 22 there results four equations in terms of bk yielding a cubic
transverse normal strain of the form:

= kz k(6P.PO)w2 - (14 P 3+ P)(C3
a y  + C x29 y)]}

i z 42033 y'x x'Y
with (23)

k= 42/85

z

In the remaining part A) the formulation we shall exclusively deal with the field-consistent
strains and stresses and, hence, we shall omit the superior asterisk which was previously used
to distinguish these quantities.

GOVERNING EQUATIONS

We derive the equations of motion together with the natural boundary conditions vi: the
principle of virtual work incorporating the field-consistent strains and stresses:

±t g + z"e - 4-6 + .x + ": 8" + t ' ) dxdv;dz

< (o JE x + G 3 z 5z y xv xz y xz + z z

-r 0 a (u + C + i ) dxdydz (24)
x y z

V

- q u dxdy - q 6u dxdy - (T6+T 6u + T 6u ) dsdz "dt= 0z f z yf x y z z
S+ SS
SS CT

where s is a ccordinate tangent to the boundary of Sm, p is the mass density, and the
superior dot () denotes differentiation with respect to time.

Consistent with the parabolic distribution of the shear strains, Equation !,S. the Drcscrihed
cd~c shear tracion is assumed to vary ' aarabolicailv as well. i.e.. T = (P) - P-) T-_s). Intro-
ducing Equations 1Ia. 1 and 23 into Equation 24. and integrating with respect ti z. ,we "Ind
hat certain interals vanish :denticallv

h h h
T Pz ' I9 /' P?) dz = oz (P1 +14P ) dz = 0,

J z a i "
-h -h -h

vielding a two-dimensional virtual work statement of the form:

- ,-

N ,U, -- N S, + N 5(w ./h) + N (3u, + Sv, )- ! x : x I V Z xv v X
S

- I ,% + < * M ( wei, h) + M , + 5% o 25x, .v - z M y xv ,, y7

8



QxW, Se ) + Qv Wv + Se )- q1 (Sw + Sw2/k "') q25wW

-M(u26u +V.:v) -I( c+ 36 Se -M(w + w2/.)Swm y y x x 3

-w :(; -d 2xd

+ Q wI + Q W dsjd C

N~ { ;u +I N v+M86+m + Q 5w
J xnl yn xn y yn x zn

C

Performing appropriate variations and integration by parts yields:

Sjti r [mu - Nx N XYY u + [m - - N xy' v

Sm

+ [I - M x, - M xyy + Q x] 68 + [I e - M ,x- M , + Qy] 8my x xyy x y m x yy- xyx,

+ (mG.w + 1 w2 ) - Qx x- Q - q j] 8w

m w + N /h - q 2] 6w, (26)
3 z

+ m: (w + 2w:) -- M/h - q-/k4l 5w, dxdy

(NJ
< N- N )Su ( N - N 3 v + (m - M ;, +e ( M mxn xn 'rn m xn xn y -n

" Zn - 5zn ) 5w ds

r
+ T LN Su + N 5v + M 58 + M 58 +Q ds dt 0xn yn xn y yn x Qzn w

C
u

where C, and C, are parts of the boundary surrounding Srn where the tractions and displace-
ments are prescribed, respectivelv and where the inertial and stress resultants are defined as:

h
+ - + -

z ' iz, q q-q, q q + q,

-h

• ,. , i l I I IIl I



h

(N,9 NV N v (a) =V x) dz,

h

(M4X ,M , 14 y f J(a Xa y, )z dz,
y -y

hh

(Qx QV f k2(P,- Pz)(T, r z) dz, (7
-h

h h

N= f{o dz, Mz f c k 2 (6P,- P,) dz,

-h -h

h h

(N n N yn fh (i X1 T ) dz, (M ,n M n f I (T , Ty )z dz,

h

Qzr] f JT dz,

xn x xy m, yn xy y

M n= M Z+ M xvM, M =n M xyZ+M M, Qzn QX'+Q M,
xn x y ri xy y Zn x y

=cos(x,n), m =cos(y,n),

wxhere n is an outward normal to the b2oundary ef S1.

Thus. the principle provides seven equations of motion:

(50 N -' +NY =my (2Sh

(3e) y M , x+ M' - Q =I M (28c)

y mxlrx x MV y =myx(2

;W: Q + Q ,+ q(5;(8c
x x y V 5

(5w') -N ,'h w (S1

10



(Sw): -M /h + qk - (Q + 2")- z 5

five stress boundar' conditions on C,,:
N N , N =N ", M =Mn , =M , Qn Q (29n

xn xn' Nn = ' M xn xn yn yn zn ' (29a)

and Five displacement boundary conditions on C,:

U= v,V V, e = x w = W.(29b)y y'

Note that Equation 29 represents Poisson-type boundary conditions.

Invoking Hooke's law for an orthotropic material, Equation 12, yields the plate stress-
displacement relations of the form:

N = A, u,x +A A 2v, + A 3 (30 a)x y

N Y ,= x +A2VJ +x + -- , +3Ohb

N = AG6 (u, - v, (c
xv x

Mx = Djj v x+ D 1 e8x I+ D1 3 ' 2 (30d)

W,
My = 120y x+ D2 2 , y+ D2 3 h', (30c)

M = D6 6 (x, + 8 ) (30)xy x y'

Qx =  G 5 5 (W, + 8 (30g)

Qy = G.(wY + a (3Oh)y y x

Nz = A, 3 UI, + A, 3v,. + A3 w

= 5 ,3- x  wz x ~ x' h

,here A.. = (2h) C.., (i,j=1,2,3),
ij Ij

-~~13 , (i3,)
Dij = (2h '/3) Cij 8 C3I (ij=1,2),

D. = k2  (2h)2  C. (i= 1,2),
13 z 13

D3 3 = k2 (12h) C33,
z

A,,= (2h) C., D,= (2h3 /3) C,,

G.. = k2  (2h) C.. (i=4,5),

II ii



Special Case: Plate in Equilibrium

It is of significance to consider the case of a quasi-static loading, leading to the vanishing
of the inertial terms, in which case Equations 28a through 28g become equilibrium equations.
Substituting Equations 30i and 30j into Equations 28f and 28g, respectively, results in the
solution for w, and w,:

h = q2h - XA_  3V'y (32a)
A 3 3

h b L 2

D3 3

Introducing Equation 32 into Equation 30 yields the expressions for N,, Ny, M, and My :

N = Al'u, + A, 2v, + C 1 3q 2ha)

N = A1.u, + A2,,v, + C:3q-h

x 5C 33

M= D,1 6 +D' 26 + 2C 13qjh2  I(3b

M D 1 2 e + yD
2 2  

+ 2C2 3qlh
2

y D X x 5C33
where

[ C. c.= 13 .]3

A.. (2h) Cij C33

D. (2h-/3) ILC.. - Cic3  (j=,)

When Equations 30c, 30f through 30h, and 33 are introduced into the equilibrium Equations
28a through 28e, we obtain two decoupled sets of second-order partial differential equations
of equilibrium in terms of five weighted-average displacements:

Fourth-order stretching

+ A 1 2 v, + A 6 6 (u, + v, + ' (hq)'x = 0 (35a)A " X'u xx 'x y xy) C33 2(3a

A 12U, + A 22v, + A 6 6 (u, + v, ) + C 3 (hq2),Y = 0
KY YY 'XY C33 y

12



Sixth-order berding

D,ae + D,25 D6 (, +, G 5 5 (W+ + "(qih ), = 0
v'xx "- x xy + xy+  y yy- x y 5C 3

(35b)

D,9)+ DI-2 6 + D16(9 + e 8 G,,(w, + 8 + -_~~',= C

G 5s(Wxx+ y'x ) + G"(W,yy+ a xy) + ql = 0

with these equilibrium equations being subject to the natural boundary conditions. Equation 29.

It is quite remarkable that comparing these results to Reissner's theory "4 (derived for the
case of transverse bending of isotropic plates, i.e., excluding the inplane deformations u and
v), we find that the equilibriium Equation 35b, the corresponding boundary conditions. Equa-
tion 29, and the stress resultants, Equations 33b, and 30f through 30h match those of the
Reissner theory.

Computing stresses from the constitutive relations, Equation 12, we find a cubic trans-
verse normal stress

= ' cql(3 - &) + 2q] (36)

satisfying the prescribed normal pressure boundary conditions of Equations 1 and 2. From
Equation 12, we also determine the parabolic shear stresses of the form

3k (2  "2 )(W, 3 ( _ 2)7 = cI ( I )((w,

xz - x y 4h

3k' 
3 1

C - k2  -, - )W v 9 ) = Q (i - :
vz 2 " - x 4h V"

These kinematicallv admissible t-arisverse stresses (i.e., obtained from constitutive equations)
can be shown to satisfy the transverse equilibrium equation of elasticity, Equation 19. and.
hence, they are also statically admissible. The transverse stresses can also be seen coincident
with those of Reissner,- 4 who assumed the parabolic transverse shear stresses at the outset,
and then computed the transverse normal stress from Equation 19. As far as the inplane
stresses, the present r, is identical to Reissner's, however, ac and a, are cubic across the
thickness due to Ez, Equation 23, whereas in Reissner's theory they are linear.

Note that although in statics the equations of equilibrium are conveniently decoupled, in
dynamics, all seven equations of motion, Equation 28, are fully coupled. In the latter case.
the solution procedure involves substitution of the stress resultants Equation 3) into Equa-
tion 28, and simultaneously solving the resulting seven differential equations for the kinematic
unknowns.

13



ASSESSMENT OF THEORY

To qualitatielv evaluate the present plate theory, an analytic solution is obtained for the
problem of an Infinite plate in equilibrium loaded at the top surface by a sinusoidal pressure
of the form:

+ S+-_
q ' q sin('7x/L) on S (q = 0 on S-) (38)

where L is a half wavelength of the loading pattern. This problem, having an exact elasticity
solution,:' has been widely employed as a benchmark in assessing plate bending theories.

Introducing Equation 38 into Equation 35, and seeking the unknown kinematic variables
in the form of sin(-rx/L) and cos(trx/L), a system of ordinary differential equations is obtained
and readily solved for the unknowns. The solutions are then simplified for the isotropic case
by replacing CQjs from Equation 12 with the appropriate expressions in terms of the Lame'
constants, A and P, which result in the form:

v(x) = S (x) = 0
x

U(X) qGLA 1S(TX/

ur~ix) q -L

5qL' A[l + 2w/X - (2/5)(Th/L) 2 ]  ( x/L) (39)
9 (x) .... cosTy 161Tah 3  X>

w (x) = 3q0L i Al + 2p/A + (2/5)( h/L)2.(3 + 4p/A)] sin(rx/L)

Relations, Equation 32, are then invoked to determine the remaining kinematic variables:

w:() =q0h(X+2)
w.(x) =) sin(7x/L)

WX) - qL [1 + " - (2/5)('rh/L) 2 (1 - 85p/21A)])sin(.Tx/L)861T- h 4 (; ,+p) (.\ -,

The midplane transverse displacement is obtained from Equation 4:

u (x,,=0) = w(x) - 0.3 w:(x) t4 ,1

z

Hooke's law, Equation 12, then provides a means for obtaining stresses:

a (x',) - [ 6(L/rh) 2+ ( 3 _ 2 ) sin(7rx/L)

(x,F.) = q-0 (2_ )(1+i)2 sin(ix/L) (42)z 4

(x,) = 3q--L (I -2) cos(7rx/L)
X Z 4 
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Several observations car be made regarding these results:

(a) As expected, all weighted-average kinematic variables are identical to those of the
Reissner theory. One can, therefore, regard the expansion for u, as hierarchical, in which
Reissnel's displacement w is the leading term, and w, and w, are the higher-order terms allow-
ing a parabolic variation of u, across the plate thickness.

(b) In the axial stress component o, the first term (linear in , ) is the Reissner (or classi-
cal) stress, while the second term is , higher-order contribution varying as P3(i). Note that
the leading stress, of the order (L,h), strongly dominates with the decreasing piate thickness.

(c) As established earlier, rz and or are the same as in the Reissner theory: they satisfy
both constitutive equations and the transverse equilibrium equation of elasticity.

In Figure 1, a rormalized value of the maximum midplane transverse displacement is plot-
ted versus the 2h,l ratio, where the results of five bending theories are compared with the
exact solution. It is seen that the present and Essenburg'sf3 solutions agree quite closely.
and they begin to deviate Crom the exact solution at 2h/L = 1. This is anticipated since the
two theories use the same order of displacement approximations, the major difference heing
that in Essenberg's beam theory, both stresses and displacements are assumed indepencon::v.
The eleven-variable theory of Lo et al. 15 also appears to be accurate up to the same ratio
value. These esults indicate that when a characteristic length of loading (or plate span) is
of the order of the plate thickness, application of a higher-order theory is particularly war-
ranted. Similar observations have been made with regard to contact problems.' 3 as well as
those involving disturbances of geometry such as holes and cutouts, having the characteristic
length of the order of the plate thickness. Note that even though Reissner's weighted-
average displacement, w, is also shown in the comparison (the nnly transverse displacement
variable in Reissner theory), it does not represent the midplane displacement. In contrast, v
is the leading term in the expansion of the present theory, where the complete through-the-
thickness distribution is expressed by u, in Equation 4.

- Exact
].5 - - Present.

Reissner

, -- Classical

,. ssenur-

'-J

= t, =(,6/9 )_h
"3

0 2 3 4
2 ,L

Figure 1. Maximum midpiane transverse displacement
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In Figures 2 through 4, the present results for cr, -rz, and cr, are presented for the case
of 2h/L = 0.5, and compared with the corresponding exact stresses. It is seen that the integ-
rity of all stresses is excellent, and particularly the transverse shear and normal stresses for
which other displacement theories produce rather inadequate stresses violating stress boundary
conditions on the top and bottom plate faces (e.g., References 12 and 15).

I10

-- _Exact

0.5 Present
(2h/L)=0.5 /

* 0.0

-0.5

-1.0
-4 -2 0 2 4

Figure 2. Distribution of maximum ox
stress across thickness.

CONCLUDING SUMMARY AND FINITE ELEMENT SUITABILITY

A tenth-order displacement theory for orthotropic, homogeneous elastic plates which
includes the inplane, transverse shear, and transverse normal deformations was developed.
The theory embodies two more kinematic variables than the Reissner and Nfindlin shear-
deformable theories. A novel means for removing field inconsistency in the transverse shear
strains was implemented and led to parabolic sirain distributions, satisfying traction-free bound-
ar, conditions. In a similar fashion, the transerse normal strain and stress approximations
were raised to cubic thickness variations. The virtual work principle yielded seven equations
of motion together with exclusively Poisson-type boundary conditions. In the case of static
equilibrium, the theory revealed a close relationship to Reissner's theory. An analytic solu-
tion to an infinite isotropic plate under a sinusoidal load revealed the high order of accuracy
attainable with this theory for all kinematic and stress quantities and, particularly, the trans-
verse stresses for which previous displacement theories yielded inaccurate results.
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1.0

-- Present

~ 0.0(2h/L)=0.5

-0.5

-I, ' ' ,

0.0 0.5 1.0
Txziq

o

Figure 3. Distribution of maximum rzx
stress across thickness.

0.5 1

Z 0.0

-Exact

-0.5 - Present

(2h/L)=O.S

-1.0 I _ J
0.0 0.5 1.0

Figure 4. Distribution of maximum oh
stress across thickness.
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Finally, the proposed displacement theory appears to be ideally suited for finite element
approximation. The five weighted-average kinematic variables require only C0-continuitNv
across element boundaries, having the highest spatial derivative in Equation 25b of order one.
The remaining two displacements, w, and w,, do not possess derivitives in the energy expres-
sions, thus permitting interelement discontinuous shape functions (i.e., C-1 continuous). The
latter aspect allows the static condensation of degrees of freedom associated with wl and w,
at the element level. The implication is that computationally efficient elements can be devel-
oped by directly adopting successful approaches of shear-deformable elements." -1920 Efforts
are currently underway to develop beam and plate elements based on this higher-order dis-
Placement theory.
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